Please Note: Calculators may be used in elementary and trig modes, but not in Calculus mode.

1. Find a function $y=f(x)$ that satisfies the differential equation $y \frac{d y}{d x}=\frac{\ln x}{e^{y^{2}}}$ and the initial condition $f(1)=0$.
\square
2. Find a function $y=f(x)$ that satisfies the differential equation $y^{\prime}+\frac{1}{x} y=x^{2}$ and the initial condition $f(1)=1$.
3. A complex plane given by a polar coordinate system and expanded to include the real and imaginary axes is shown below. Place the complex numbers $c_{1}=\left(2, \frac{\pi}{6}\right), c_{2}=\left(1, \frac{-\pi}{4}\right)$ and $c_{3}=$ $\left(-\frac{1}{2}, \frac{3 \pi}{4}\right)$ in the plane. Determine the polar coordinates of $c_{2} c_{3}$ and put it into the plane. Express the numbers c_{1} and $c_{2} c_{3}$ in the form $a+b i$ and compute $c_{1}+c_{2} c_{3}$. Put the result into the box below.

\square
4. Specify a complex number c in polar coordinates that satisfies $c^{5}=-1$ (with $c \neq-1$) and place it into the complex plane below. Explain why your answer c satisfies $c^{5}=-1$. Determine the Cartesian coordinates of this point in the plane and rewrite c in the form $c=a+b i$.

$$
c=(\quad, \quad) \text { in polar } c=(\quad)+(\quad i \text { in Cartesian }
$$

5. Find a function $y=f(x)$ that satisfies the differential equation $y^{\prime \prime}+2 y^{\prime}+5 y=0$ as well as the conditions $f\left(\frac{\pi}{4}\right)=0$ and $f^{\prime}\left(\frac{\pi}{2}\right)=e^{-\frac{\pi}{2}}$. Put the resulting $y=f(x)$ into the box below.
6. Consider the ellipse $\frac{x^{2}}{7^{2}}+\frac{y^{2}}{4^{2}}=1$. Find a polar function of the form $r=f(\theta)=\frac{d}{1+\varepsilon \cos \theta}$ with the property that its graph has the same shape as that of the given ellipse. Put your answer into the box.
7. Consider the function $r=f(\theta)=\cos \theta$. The plane below has an $x y$-coordinate system superimposed over a polar coordinate system.
i. By going from polar to Cartesian coordinates verify that the graph of $r=f(\theta)$ is a circle. Sketch the circle into the plane.

ii. Pick a general point P on the circle. Draw the tangent line to the circle at P and draw in the corresponding angle α. Make use of a property of isosceles triangles to verify that $f^{\prime}(\theta)=$ $\tan \left(\alpha-\frac{\pi}{2}\right) \cdot f(\theta)$ holds for the function $r=f(\theta)=\cos \theta$.
8. Sketch the graph of the polar function $r=f(\theta)=\frac{1}{\cos \theta}$ into the coordinate plane below.

Make use of the graph to compute the integral $\int_{0}^{\frac{\pi}{3}} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta$. and put your answer into the box below.
\square

Then use the graph compute the integral $\int_{0}^{\frac{\pi}{3}} \frac{1}{2} f(\theta)^{2} d \theta$ and put your answer into the box.
\square
9. The figure below shows a planet in motion around the Sun. The x and y coordinates are both differentiable functions of t and the derivatives $\frac{d x}{d t}=x^{\prime}(t)$ and $\frac{d y}{d t}=y^{\prime}(t)$ are differentiable as well. One of the early facts in the modern theory of gravitation is the equality $x \frac{d y}{d t}-y \frac{d x}{d t}=c$, where c is a constant.

i. Switch to polar coordinates (r, θ) and let $r=f(\theta)$ be a function that has the planet's trajectory as its graph. Use the fact that $\theta=\theta(t)$ and $r(t)=f(\theta(t))$ are both differentiable functions of t, to show that $r(t)^{2} \theta^{\prime}(t)=c$.
ii. Consider P at two different times t_{1} and t_{2} in its orbit and suppose that $t_{1}<t_{2}$. Explain the meaning of the integral $\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} \sqrt{f^{\prime}(\theta(t))^{2}+f(\theta(t))^{2}} \theta^{\prime}(t) d t$.

Formulas and expressions: $\int u d v=u v-\int v d u \quad A y^{\prime \prime}+B y^{\prime}+C y=0 \quad y=D_{1} e^{r_{1} x}+D_{2} e^{r_{2} x}$ $y=D_{1} e^{2 x}+D_{2} x e^{2 x} \quad y=e^{a x}\left(D_{1} \cos b x+D_{2} \sin b x\right) \quad e^{i \theta}=\cos \theta+i \sin \theta \quad x=r \cos \theta \quad y=r \sin \theta$ $a=\frac{d}{1-\varepsilon^{2}} \quad b=\frac{d}{\sqrt{1-\varepsilon^{2}}} \quad a=\frac{d}{\varepsilon^{2}-1} \quad b=\frac{d}{\sqrt{\varepsilon^{2}-1}} \quad f^{\prime}(\theta)=f(\theta) \cdot \tan \left(\alpha-\frac{\pi}{2}\right) \quad \int_{a}^{b} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta$ $\frac{1}{2} r^{2} \theta \quad \int_{a}^{b} \frac{1}{2} f(\theta)^{2} d \theta$

