Exam

Name

Please Note: Calculators may be used in elementary and trig modes, but not in Calculus mode.

1. Find a function y = f(x) that satisfies the differential equation $y\frac{dy}{dx} = \frac{\ln x}{e^{y^2}}$ and the initial condition f(1) = 0.

2. Find a function y = f(x) that satisfies the differential equation $y' + \frac{1}{x}y = x^2$ and the initial condition f(1) = 1.

3. A complex plane given by a polar coordinate system and expanded to include the real and imaginary axes is shown below. Place the complex numbers $c_1 = (2, \frac{\pi}{6}), c_2 = (1, \frac{-\pi}{4})$ and $c_3 = (-\frac{1}{2}, \frac{3\pi}{4})$ in the plane. Determine the polar coordinates of c_2c_3 and put it into the plane. Express the numbers c_1 and c_2c_3 in the form a + bi and compute $c_1 + c_2c_3$. Put the result into the box below.

4. Specify a complex number c in polar coordinates that satisfies $c^5 = -1$ (with $c \neq -1$) and place it into the complex plane below. Explain why your answer c satisfies $c^5 = -1$. Determine the Cartesian coordinates of this point in the plane and rewrite c in the form c = a + bi.

5. Find a function y = f(x) that satisfies the differential equation y'' + 2y' + 5y = 0 as well as the conditions $f(\frac{\pi}{4}) = 0$ and $f'(\frac{\pi}{2}) = e^{-\frac{\pi}{2}}$. Put the resulting y = f(x) into the box below.

6. Consider the ellipse $\frac{x^2}{7^2} + \frac{y^2}{4^2} = 1$. Find a polar function of the form $r = f(\theta) = \frac{d}{1 + \varepsilon \cos \theta}$ with the property that its graph has the same shape as that of the given ellipse. Put your answer into the box.

7. Consider the function $r = f(\theta) = \cos \theta$. The plane below has an *xy*-coordinate system superimposed over a polar coordinate system.

i. By going from polar to Cartesian coordinates verify that the graph of $r = f(\theta)$ is a circle. Sketch the circle into the plane.

ii. Pick a general point P on the circle. Draw the tangent line to the circle at P and draw in the corresponding angle α . Make use of a property of isosceles triangles to verify that $f'(\theta) = \tan(\alpha - \frac{\pi}{2}) \cdot f(\theta)$ holds for the function $r = f(\theta) = \cos \theta$.

8. Sketch the graph of the polar function $r = f(\theta) = \frac{1}{\cos \theta}$ into the coordinate plane below.

Make use of the graph to compute the integral $\int_0^{\frac{\pi}{3}} \sqrt{f(\theta)^2 + f'(\theta)^2} \, d\theta$. and put your answer into the box below.

Then use the graph compute the integral $\int_0^{\frac{\pi}{3}} \frac{1}{2} f(\theta)^2 d\theta$ and put your answer into the box.

9. The figure below shows a planet in motion around the Sun. The x and y coordinates are both differentiable functions of t and the derivatives $\frac{dx}{dt} = x'(t)$ and $\frac{dy}{dt} = y'(t)$ are differentiable as well. One of the early facts in the modern theory of gravitation is the equality $x \frac{dy}{dt} - y \frac{dx}{dt} = c$, where c is a constant.

i. Switch to polar coordinates (r, θ) and let $r = f(\theta)$ be a function that has the planet's trajectory as its graph. Use the fact that $\theta = \theta(t)$ and $r(t) = f(\theta(t))$ are both differentiable functions of t, to show that $r(t)^2 \theta'(t) = c$.

ii. Consider P at two different times t_1 and t_2 in its orbit and suppose that $t_1 < t_2$. Explain the meaning of the integral $\frac{1}{t_2-t_1}\int_{t_1}^{t_2} \sqrt{f'(\theta(t))^2 + f(\theta(t))^2} \,\theta'(t) dt$.

Formulas and expressions: $\int u \, dv = uv - \int v \, du \qquad Ay'' + By' + Cy = 0 \qquad y = D_1 e^{r_1 x} + D_2 e^{r_2 x}$ $y = D_1 e^{2x} + D_2 x e^{2x} \qquad y = e^{ax} (D_1 \cos bx + D_2 \sin bx) \qquad e^{i\theta} = \cos \theta + i \sin \theta \qquad x = r \cos \theta \qquad y = r \sin \theta$ $a = \frac{d}{1 - \varepsilon^2} \qquad b = \frac{d}{\sqrt{1 - \varepsilon^2}} \qquad a = \frac{d}{\varepsilon^2 - 1} \qquad b = \frac{d}{\sqrt{\varepsilon^2 - 1}} \qquad f'(\theta) = f(\theta) \cdot \tan(\alpha - \frac{\pi}{2}) \qquad \int_a^b \sqrt{f(\theta)^2 + f'(\theta)^2} \, d\theta$ $\frac{1}{2} r^2 \theta \qquad \int_a^b \frac{1}{2} f(\theta)^2 \, d\theta$